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a b s t r a c t

We consider the problem of separating maximally violated inequalities for the precedence
constrained knapsack problem. Though we consider maximally violated constraints in a
very general way, special emphasis is placed on induced cover inequalities and induced
clique inequalities. Our contributions include a new partial characterization of maximally
violated inequalities, a new safe shrinking technique, and new insights on strengthening
and lifting. This work follows on the work of Boyd (1993), Park and Park (1997), van
de Leensel et al. (1999) and Boland et al. (2011). Computational experiments show that
our new techniques and insights can be used to significantly improve the performance of
cutting plane algorithms for this problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a directed graph G = (V , A), vectors a ∈ ZV
+
, c ∈ ZV , and b ∈ Z+, the precedence-constrained knapsack problem

(PCKP) consists in solving a problem of the form,

max cx
s.t. x ∈ P(G, a, b)

x ∈ {0, 1}V

where

P(G, a, b) =

x ∈ [0, 1]V : ax ≤ b, xi ≤ xj ∀(i, j) ∈ A


.

Aside from being an interesting problem in itself, PCKP is an important substructure of many common, more complex,
integer programming problems. Important examples arise in the context of production scheduling problems, where a
number of jobs must be scheduled for processing subject to limited resources, and where precedence relationships dictate
that in order for some jobs to be processed other jobs must be processed as well. An example of such a problem that has
receivedmuch attention in recent years is the open-pitmine production scheduling problem. In this problem, jobs represent
discretized units of rock that must be extracted, and precedence relationships establish that units must be extracted from
the surface on downwards. Integer programming formulations for open pit mine production scheduling problems having
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PCKP as a substructure appear as early as in the 1960s and 1970s in the works of Johnson [16], Dagdelen and Johnson [13]
and others. Since then, a number of articles have addressed PCKP specifically. These articles can broadly be subdivided in two
groups: Those articles which develop algorithms to solve PCKP as an optimization problem, and those articles that analyze
the polyhedral structure of P(G, a, b) ∩ {0, 1}n.

Practical open pit mining problems are very large, easily having tens or hundreds of millions of variables. As shown by
Johnson and Niemi [17], however, PCKP is stronglyN P -complete. Thus, efforts to solve this problem to provable optimality
gaps have either been based on approximation algorithms [11,21] or on enumerative methods such as branch-and-bound.
An important component of any branch-and-bound solver is the LP relaxation solver.Much progress has beenmade in recent
years solving the LP relaxations of PCKP generalizations with customized algorithms. Important examples include the work
of Chicoisne et al. [8] and Bienstock and Zuckerberg [3]. Heuristics for these problems that use PCKP as a subproblem, or
that use the PCKP linear programming relaxation as a subproblem, are described in Amaya et al. [1], Bley et al. [4], Chicoisne
et al. [8] and Cullenbine et al. [12].

Polyhedral analyses, on the other hand, have focused on developing useful cutting planes. Boyd [7], Park and Park [20] and
van de Leensel et al. [22] describe characterizations, separation algorithms, and strengthening techniques for an important
class of cutting planes known as induced minimal cover inequalities. Boland et al. [5] extend previous results using clique
inequalities. Bley et al. [4] test many of these ideas on open pit mine production scheduling problems. Despite important
work in this problem, cutting plane techniques to date are still limited in terms of the instance sizes that can effectively be
tackled computationally. This is a problem, because, if there is any hope of being able to solve large integer programming
formulations of PCKP generalizations, such as those that appear in the context of open pit mining, cutting planes are likely
to play an important role.

In this article, given a fractional point x∗
∈ P(G, a, b), we are interested in efficiently finding an inequality αx ≤ β

that is valid for all x in P(G, a, b) ∩ {0, 1}n and maximally violated by x∗. In the context of this paper, we will say that a valid
inequalityαx ≤ β ismaximally violated by x∗ if it maximizes (αx−β)

∥α∥1
, where ∥·∥1 represents the one-norm inRn. Specifically,

we are interested in extending the work of Boyd [7], Park and Park [20], van de Leensel et al. [22] and Boland et al. [5] so as
to tackle significantly larger instances of PCKP and its generalizations.

For this we introduce new shrinking techniques that can be used to reduce the separation problem in any given instance
of PCKP to an equivalent separation problem in a smaller instance. This shrinking procedure is safe in the sense that it
guarantees that the most violated cuts in the original problem can be mapped to equally violated cuts in the shrunken
problem, and vice-versa. Moreover, within this shrunken graph, we identify a very small set of nodes in which the support
of maximally violated constraint coefficients must be contained. Finally, we introduce a new way of strengthening general
valid inequalities for PCKP, and remark how the lifting techniques of Park and Park [20], originally proposed for minimal
induced cover inequalities, can be generalized to broader classes of inequalities.

This article is organized as follows. In Section 2we review important results from the literature and introduce the notation
wewill use throughout the paper. In Section 3we characterizemaximally violated inequalities and introduce the concept of
break-points, whichwill be used throughout the paper. In Section 4we show how to shrink the original graph in order to find
maximally violated inequalities in a smaller problem. Moreover, we show that, if this shrinking operations is obtained using
break-points, then we can map maximally violated inequalities obtained for the shrunken problem to maximally violated
inequalities for the original one. In Section 5 we show that it is possible to obtain even further reductions. In Section 6 we
show how to obtain strengthened inequalities by using lifting procedures. Finally, in Section 7, we present computational
results that show the usefulness of the proposed methodologies.

2. Definitions, assumptions, and background material

In this section we establish the assumptions and notation that will be used throughout the article. More important,
we survey some important prior results concerning two classes of valid inequalities for PCKP, the minimal induced cover
inequalities and the clique inequalities. These results, which can be found in previous literature, will be the starting point
for our developments in later sections.

Definition 1. Consider a directed graph G = (V , A) with no directed cycles. We say that C ⊆ V is a closure in G if i ∈ C
implies j ∈ C for all (i, j) ∈ A. That is, if set C is closed under the precedence relationships defined by graph G. Given any set
S ⊆ V , we define the smallest closure containing S in graph G = (V , A) as follows:

cl(G, S) = S ∪ {j ∈ V : there is a path in G from some i ∈ S to j }.

To simplify notation, when graph G is clear from context we will write cl(S) instead of cl(G, S). For i ∈ V , we will write cl (i)
instead of cl ({i}).

Definition 2. Consider a directed graph G = (V , A) with no directed cycles. We say that R ⊆ V is a reverse closure in G if
j ∈ R implies i ∈ R for all (i, j) ∈ A. That is, if set R is closed under the reverse of precedence relationships defined by graph
G. Given any set S ⊆ V , we define the smallest reverse closure containing S in graph G = (V , A) as follows:

rcl(G, S) = S ∪ {i ∈ V : there is a path in G from i to some j ∈ S }.
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To simplify notation, when graph G is clear from context we will write rcl(S) instead of rcl(G, S). For i ∈ V , we will write rcl
(i) instead of rcl ({i}).

Definition 3. We say that (G, a, b, c) defines an instance of PCKP if,

• G = (V , A) is a directed graph,
• a ∈ ZV represents non-negative node-weights,
• b ∈ Z is a non-negative scalar and
• c ∈ ZV represents the cost of each v ∈ V .

Given a set C ⊆ V and a vector y ∈ RV we will convene that y(C) =


i∈C yi. Since we are only interested in the feasible
set of an instance of PCKP, we note (G, a, b) throughout the document, omitting the c parameter. Also, in order to simplify
notation and proofs, we will make the following working assumptions regarding instances of PCKP.

Definition 4. We say that an instance of PCKP (G, a, b) satisfies our working assumptions if,

• G = (V , A) has no directed cycles,
• For every i, j, k ∈ V , (i, j), (j, k) ∈ A implies (i, k) ∈ A,
• There are no arcs of the form (i, i) with i ∈ V ,
• a(cl(i)) ≤ b for all i ∈ V and
• a(V ) > b.

Note that there is no loss of generality from our working assumptions. In fact, if G were not acyclic, we could iteratively
collapse all of the variables associatedwith nodes in any directed cycle into a single variable. In this waywewould obtain an
equivalent instance of PCKP. Adding (or removing) arcs to satisfy the second and third conditions does not change the solu-
tion space of PCKP, nor does it change the set P(G, a, b). If a(cl(k)) > b for k ∈ V , then xk = 0 for all x ∈ P(G, a, b) ∩ {0, 1}n.
In this case variable xk may as well be eliminated. If a(V ) ≤ b, then the convex hull of P(G, a, b) ∩ {0, 1}n is fully described
by inequalities xi ≤ xj for (i, j) ∈ A and xi ≥ 0 for i ∈ V . This follows from the total unimodularity of the precedence con-
straints matrix. Thus, if a(V ) ≤ b there are no interesting valid inequalities to study. Finally observe that under our working
assumptions, sets cl(S) and rcl(S) can be defined as follows,

cl(S) = S ∪ {j ∈ V : (i, j) ∈ A for some i ∈ S} and
rcl(S) = S ∪ {i ∈ V : (i, j) ∈ A for some j ∈ S}.

Theorem 5 (Boyd, [7]). If (G, a, b) defines an instance of PCKP satisfying our working assumptions, then P(G, a, b) is full
dimensional.

Given an instance of PCKP (G, a, b) satisfying our working assumptions, we focus on finding strong inequalities αx ≤ β
that are valid for P(G, a, b) ∩ {0, 1}V . In what follows, we formalize our notion of strong valid inequalities.

Definition 6. Let (G, a, b) define an instance of PCKP satisfying ourworking assumptions. Consider two inequalitiesαx ≤ β ,
and α′x ≤ β ′, both valid for P(G, a, b) ∩ {0, 1}V . We say that inequality α′x ≤ β ′ is stronger than inequality αx ≤ β
if (a) for every x̂ ∈ P(G, a, b) we have that α′x̂ ≤ β ′ implies αx̂ ≤ β , and (b) there exists x̂ ∈ P(G, a, b) such that
(α′x̂ − β ′)/∥(α′, β ′)∥ < (αx̂ − β)/∥(α, β)∥.1

From a polyhedral analysis point of view it is only natural to try and generalize known families of valid inequalities
for the knapsack problem (KP) to PCKP. The first to do so was Boyd [7], who, extending the cover inequalities of Balas
and Jeroslow [2] and the (1, k)-configuration inequalities of Padberg [18], first introduced the notion of induced cover
inequalities.

Definition 7. Let (G, a, b) define an instance of PCKP satisfying our working assumptions. We say that C ⊆ V is an induced
cover of (G, a, b) if a(cl(C)) > b. If C is an induced cover, then the valid inequality

x(C) ≤ |C | − 1 (1)

is known as the induced cover inequality associated with C . In this document we define an induced cover C to be minimal
if a (cl(C\{i})) ≤ b for all i ∈ C . If C is a minimal induced cover, we say that inequality (1) is a minimally induced cover
inequality, or MIC inequality for short.

Note that the definition ofMIC inequalities that we use coincides with that used by Park and Park [20]. However, Boyd [7]
and van de Leensel et al. [22], require that an induced cover C ⊆ V satisfies a (cl(C)\{i}) ≤ b for all i ∈ C in order to be
minimal.

1 An example of this situation is when the face induced in P(G, a, b) by (α′, β ′) strictly contains the face induced in P(G, a, b) by (α, β); in this case,
there exists x̂ ∈ P(G, a, b) satisfying α′ x̂ = β ′ and αx̂ < β .
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Fig. 1. Example PCKP: ai = 1, i = 1, . . . , 18, b = 10, note that C = {15, 16, 17} is a MIC, but not a facet for the problem. In particular, x3, x4, x5 must be
one whenever x15 + x16 + x17 = 2.

Remark. Let (G, a, b) represent an instance of PCKP satisfying our working assumptions. If C is a minimal induced cover,
then i, j ∈ C implies (i, j) ∉ A. In fact, if i, j ∈ C and (i, j) ∈ A, then cl(C) = cl(C−{j}), thus contradicting theminimality of C .

As observed by Bley et al. [4], given x∗
∈ P(G, a, b) it is possible to find a maximally violated MIC inequality by solving a

simple integer programming problem.
Given any induced cover C , there always exists a minimal induced cover C ′

⊆ C . Further, if C ′ is an induced cover and
C ′ ( C , then the induced cover inequality associated with C ′ is stronger than that associated with C . As observed by Boyd,
this does not imply that minimal induced cover inequalities are facet-defining. To see this, consider the example illustrated
in Fig. 1 and the MIC inequality x15 + x16 + x17 ≤ 2. All feasible points satisfying this inequality at equality also satisfy
x10 = x11 = 1. Since we know that the feasible region is full dimensional (Theorem 5), it follows that the inequality cannot
be facet defining. Boyd [7] and later Park and Park [20] describe conditions under which MIC inequalities are facet-defining.

In the case that a MIC inequality is not facet-defining it can be strengthened through lifting techniques to obtain a
constraint of the form

i∈C

xi +

i∈cl(C)

γi(1 − xi) +


j∈V\cl(C)

ηjxj ≤ |C | − 1, (2)

where η, γ are non-negative vectors inRV . Going back to the example illustrated in Fig. 1, we have that, if we strengthen the
MIC inequality x15+x16+x17 ≤ 2 on x10 and then x11, we obtain the facet-defining inequality x15+x16+x17−x10−x11 ≤ 0.

Park and Park [20] showed that, given a minimally induced cover C , it is possible to lift the corresponding MIC inequality
on variables xi with i ∈ cl(C) in polynomial time.Moreover, they showed that this was possible in such away as to guarantee
that the resulting inequality was maximally violated. Furthermore, van de Leensel et al. [22] showed that it was possible to
speed-up the algorithm of Park and Park to run in O (|V | log∗

|V |). Park and Park [20] also introduced a heuristic for lifting xi
with i ∈ rcl(C). Van de Leensel et al. [22] studied the optimal lifting problem associated with these variables as well as the
conditions required to ensure that the resulting inequality would be facet-defining. Van de Leensel et al. [22] also proposed
a pseudo-polynomial time algorithm for the case in which G is a tree.

Definition 8. Let (G, a, b) define an instance of PCKP satisfying our working assumptions. We say that C ⊆ V is an induced
clique of (G, a, b) if a(cl({i, j})) > b for all i, j ∈ C such that i ≠ j. If C is an induced clique, then the valid inequality

x(C) ≤ 1, (3)

is known as the induced clique inequality associated with C .

Proposition 9. (Boland et al. [5]) Let (G, a, b) define an instance of PCKP satisfying our working assumptions. If C is an induced
clique in (G, a, b), then i, j ∈ C implies (i, j) ∉ A. Further, i, j ∈ C implies that there is no k ∈ V such that (k, i) ∈ A and (k, j) ∈ A.

Proof. First, suppose i, j ∈ C and (i, j) ∈ A. Since i, j ∈ C we know that a(cl({i, j})) > b. However, (i, j) ∈ A implies
cl(j) ⊆ cl(i), thus cl({i, j}) ⊆ cl({i}). This in turn implies a(cl({i})) > bwhich contradicts our working assumptions. Second,
suppose i, j ∈ C and that there exists k ∈ V such that (k, i) ∈ A and (k, j) ∈ A. In this case cl{i, j} ⊆ cl(k). However, in this
case, a(cl({i, j})) > b implies a(cl({k})) > b, which contradicts our working assumptions. �

Boland et al. [5] observe that it is possible to obtain facet-defining clique inequalities by sequentially up-lifting variables
from covers of size 2. Based on this observation they propose a polynomial-time running heuristic that can generate
strengthened induced clique inequalities.

3. Maximally violated inequalities

In this sectionwe introduce some tools for characterizingmaximally violated inequalities. As wewill see, these tools also
allow us to characterize maximally violated inequalities belonging to specific classes of constraints, such as MIC and Clique
Inequalities, and their lifted variants.
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Definition 10. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b).

We say that an inequality αx ≤ β valid for P(G, a, b) ∩ {0, 1}V is maximally violated by x∗ if (α, β) maximizes (αx∗−β)

∥α∥1
.

Before further discussing maximally violated inequalities we introduce the notion of break-points and weight-balanced
inequalities.

Definition 11. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b).

Define

B[x∗
] = {j ∈ V : x∗

i < x∗

j , ∀(i, j) ∈ A}.

We say that B[x∗
] is the set of precedence break-points associated with G and x∗. If j ∈ V is such that there is no arc (i, j) ∈ A,

then we assume j ∈ B[x∗
]. For each i ∈ V define,

B[x∗, i] = B[x∗
]


rcl(i).

Proposition 12. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b).

• For every i ∉ B[x∗
], there exists j ∈ B[x∗, i] such that x∗

j = x∗

i .
• If i, j ∈ V are such that B[x∗, i] = B[x∗, j] then x∗

i = x∗

j .

Proof. We only need to prove that x∗

i = maxj∈B[x∗,i] x∗

j . Since B[x∗, i] ⊆ rcl(i), then x∗

i ≥ x∗

j for all j ∈ B[x∗, i]. If i ∈ B[x∗
]

then the result holds trivially. Suppose that i ∉ B[x∗
] then there exists j ∈ rcl(i) such that x∗

i = x∗

j . If j ∉ B[x∗
] then applying

this argument recursively we find a j′ ∈ B[x∗, i] such that x∗

i = x∗

j′ , concluding the proof. �

Definition 13. Let (G, a, b)define an instance of PCKP satisfying ourworking assumptions.We say that an inequalityαx ≤ β
is weight-balancedwith respect to G and x∗ if αi ≤ 0 for all i ∉ B[x∗

].

The following proposition describes an important characterization of violated inequalities that we will later see is very
helpful for separating cliques and MICs.

Proposition 14. Let (G, a, b) define an instance of PCKP satisfying our working assumptions. Consider x∗
∈ P(G, a, b) and an

inequality αx ≤ β valid for P(G, a, b) ∩ {0, 1}V . There exists an inequality ᾱx ≤ β , valid for P(G, a, b) ∩ {0, 1}V , such that (1)
ᾱx ≤ β is weight-balanced with respect to x∗, (2) αx∗

= ᾱx∗, and (3) ∥ᾱ∥1 ≤ ∥α∥1.

Proof. Suppose αx ≤ β defines a valid inequality for P(G, a, b) that is not weight-balanced with respect to x∗. By definition,
because αx ≤ β is not weight-balanced, there must exist i ∉ B[x∗

] such that αi > 0. From Proposition 12 we know there
exists j ∈ B[x∗, i] such that x∗

i = x∗

j .
First, since xj ≤ xi is valid for P(G, a, b) ∩ {0, 1}V , it follows that αx + αi(xj − xi) ≤ β is valid for P(G, a, b) ∩ {0, 1}V as

well. Second, note that αx∗
= αx∗

+ αi(x∗

j − x∗

i ) = ᾱx∗. Finally, note that ∥α′
∥1 ≤ ∥α∥1. In fact,

∥α′
∥1 =


k

|α′

k| =


k≠i,j

|α′

k|


+ |α′

i | + |α′

j |

=


k≠i,j

|αk|


+ 0 + |αi + αj| ≤ ∥α∥1.

Now ᾱ can be obtained from α by the following recursive procedure: If α is not weight-balanced with respect to x∗, let
i ∉ B[x∗

] be such that αi > 0 and let j ∈ B[x∗, i] such that x∗

i = x∗

j . Define α′ such that α′x = αx + αi(xj − xi). If α′ is not
weight-balanced, redefine α as α′ and repeat. Otherwise, set ᾱ to α: the recursion is complete.

The recursion terminates because

|{i ∉ B[x∗
] : ᾱi > 0}| < |{i ∉ B[x∗

] : αi > 0}|. �

The following theorem follows directly from Proposition 14. As we will see, this is a very practical result for separating
valid inequalities.

Theorem 15. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b). There

exists a maximally violated inequality with respect to x∗ that is weight-balanced with respect to x∗.
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A point of concern regarding Theorem 15 is that it says nothing concerning specific classes of inequalities. For example,
if x(C) ≤ |C | − 1 is a maximally violated MIC inequality that is not weight-balanced, it is possible that after applying
the weight-balancing procedure described in Proposition 14, we might obtain an inequality that is not a MIC inequality.
The same concern applies to induced clique inequalities. Is it also true that within specific classes of inequalities such as
cliques and MICs, there are maximally violated inequalities that are weight-balanced? This is addressed in the following
propositions.

Proposition 16. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b). Let

C be a minimally induced cover. There exists a minimally induced cover C̄ ⊆ B[x∗
] such that (a) constraint x(C̄) ≤ |C̄ | − 1 is

weight-balanced and (b) x(C̄) ≤ |C̄ | − 1 is at least as violated as x(C) ≤ |C | − 1.

Proof. Since C is a minimal induced cover we know a(cl(C)) > b. From Proposition 12 we know that for all i ∈ C there
exists j(i) ∈ B[x∗, i] such that x∗

i = x∗

j(i). Let C
′
= {j(i) : i ∈ C}. Observe that |C ′

| ≤ |C |. Further, since either j(i) = i or
(j(i), i) ∈ A for all i ∈ C we know that cl(C) ⊆ cl(C ′). Since a ≥ 0 it follows that C ′ is an induced cover. Let C̄ ⊆ C ′ be a
minimal induced cover. It follows that |C̄ | ≤ |C |, and,


i∈C̄ (1 − x∗

i ) ≤


i∈C ′(1 − x∗

i ) ≤


i∈C (1 − x∗

j(i)) =


i∈C (1 − x∗

i ).

Hence, x∗(C̄)− (|C̄ |−1) ≥ x∗(C)− (|C |−1), and so, x∗(C̄)−(|C̄ |−1)
|C̄ |

≥
x∗(C)−(|C |−1)

|C |
. Further, since C̄ ⊆ B[x∗

] and all coefficients

of inequality x(C̄) ≤ |C̄ | − 1 are positive, we conclude that it is weight-balanced. �

Proposition 17. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b).

Consider an induced clique C ⊆ V . There exists an induced clique C̄ ⊆ B[x∗
] such that (a) constraint x(C̄) ≤ 1 is weight-balanced

and (b) constraint x(C̄) ≤ 1 is at least as violated as x(C) ≤ 1.

Proof. Since x(C) ≤ 1 is a valid clique inequality we know that if i, j ∈ C are such that i ≠ j, then a(cl({i, j})) > b. From
Proposition 12 we know that for all i ∈ C there exists j(i) ∈ B[x∗, i] such that x∗

i = x∗

j(i). Let C̄ = {j(i) : i ∈ C}. Note that
|C̄ | ≤ |C |. Since either j(i) = i or (j(i), i) ∈ A for all i ∈ C we know that cl(i) ⊆ cl(j(i)). This implies that for i, k ∈ C̄
such that i ≠ k, we have a(cl{i, k}) > b. Thus x(C̄) ≤ 1 defines a clique inequality. To see that x(C̄) ≤ 1 is at least as
violated, observe that by Proposition 9 it is not possible to have two vertices i and i′ in C such that j(i) = j(i′). Hence,
x∗(C) =


i∈C x∗

i =


i∈C x∗

j(i) = x∗(C̄), and so, x∗(C)−1
|C |

≤
x∗(C̄)−1

|C̄ |
. �

From Propositions 16 and 17 the following theorem directly follows.

Theorem 18. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b). There

exist maximally violated clique inequalities and maximally violated MIC inequalities that are weight-balanced.

Since both clique andMIC inequalities have no negative coefficients, Theorem 18 implies that, given a fractional solution
x∗, the support of maximally violated constraints will be contained in B[x∗

]. As wewill see later in the computational section
this is a very important result, because the set B[x∗

] tends to be very small.

4. Shrinking and PCKP

In applying separation algorithms to combinatorial optimization problems defined over graphs it is very helpful to
preprocess these graphs in order to reduce the optimization problem to one that is equivalent, but defined over a smaller
graph. This serves to reduce the number of operations that must be performed. Given a graph G and a set of vertices S ⊆ V
let G/S denote the graph obtained by contracting the set S into a single node s and deleting any self-loop edges that appear.
This operation is called shrinking S in G, and has been used with great success in solving large-scale integer programming
problems such as the Traveling Salesman Problem [19,10]. In this section we describe how shrinking can be defined in the
context of PCKP. As we will see, the notion of weight-balanced inequalities plays a key role in shrinking.

Definition 19. Let (G, a, b) define an instance of PCKP satisfying our working assumptions and let S be a family of sets
defining a partition of V . Define Ḡ = (V̄ , Ā) as the graph obtained from contracting the sets S ∈ S, and define ā ∈ ZV̄ by
āS = a(S). We say that Ḡ and ā are obtained from G and a by shrinking the partition S. Note that (Ḡ, ā, b) defines an instance
of PCKP.

Theorem 20. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, let S be a family of sets defining a
partition of V and let (Ḡ, ā, b) the instance obtained by shrinking the partition S. Consider an inequality αx ≤ β valid for
P(G, a, b) ∩ {0, 1}V . Define ᾱS = α(S) for each S ∈ S. Then, ᾱz ≤ β is valid for P(Ḡ, ā, b) ∩ {0, 1}V̄ .

Proof. Let z ∈ P(Ḡ, ā, b) ∩ {0, 1}V̄ and define y ∈ [0, 1]V as yi = zS for all i ∈ S, S ∈ S. We first prove that y ∈ P
(G, a, b) ∩ {0, 1}V . In fact,

ay =


i∈V

aiyi =


S∈S


i∈S

aiyi =


S∈S


i∈S

ai


zS =


S∈S

āSzS = āz ≤ b. (4)
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Fig. 2. Example of a canonical partition of V implied by G and x∗ . The values of x∗ are written inside the vertices. The rectangular vertices correspond to
representing elements for each set in the partition. The vertices in B[x∗

] have bold letters.

Additionally, for each (i, j) ∈ A either i and j are in the same set S ∈ S, or in different sets. In the first case, yi = yj = zS , so
in particular it satisfies yi ≤ yj. In the second case, suppose that i ∈ S and j ∈ T . Since (i, j) ∈ A, we also have (S, T ) ∈ Ā, so
yi = zS ≤ zT = yj.

Now, since y ∈ P(G, a, b) it follows that αy ≤ β . Thus, replacing a and ā by α and ᾱ respectively in equation (4), we
obtain:

ᾱz =


S∈S

ᾱSzS =


S∈S


i∈S

αi


zS =


S∈S


i∈S

αiyi =


i∈V

αiyi = αy ≤ β. �

Corollary 1. Let S be a family of sets defining a partition of V and x∗ such that if i, j ∈ S then x∗

i = x∗

j . Let z
∗

∈ RV̄ be defined
such that z∗

S = x∗

i , for all i ∈ S, S ∈ S. Then, z∗
∈ P(Ḡ, ā, b). Moreover, αx∗

= ᾱz∗.

Proof. This result is obtained by replacing a, ā, z and y by α, ᾱ, z∗ and x∗ respectively in equation (4). �

The previous corollary implies that if there exists a violated inequality for PCKP, then there exists a violated inequality
for the shrunken graph. This result, however, does not imply that every violated constraint in the shrunken problem can be
mapped back to a violated constraint in the original variable space. This issue is addressed in the following theorem. Before,
however, we need to show how it is possible to define a partition of V such that it is safe to perform shrinking for PCKP.

Definition 21. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b). For

each i ∈ V define,

Πi = {j ∈ V : B[x∗, i] = B[x∗, j]}.

As immediately follows from Proposition 12, the family of sets S = {Πi}i∈V defines a partition of V . Moreover, every S ∈ S
is such that i, j ∈ S implies x∗

i = x∗

j . We say that the family of sets S defines the canonical partition of V implied by G and x∗.

Note that this partition can be constructed in O((|V | + |E|)2) using a topological order (see [9]).

Theorem 22. Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider x∗
∈ P(G, a, b). Let S

represent the canonical partition of V defined by G and x∗. Let Ḡ = (V̄ , Ā), ā and z∗ be obtained from G, a and x∗ by shrinking
partition S as described in Theorem 20. For each set S ∈ S let us choose iS ∈ S (a representing element, see Fig. 2 for an example)
such that either iS ∈ B[x∗

] or if (j, iS) ∈ A then j ∉ S. Finally, let ᾱz ≤ β be a valid inequality for P(Ḡ, ā, b) ∩ {0, 1}V̄ that is
weight-balanced with respect to z∗. Define,

αi =


ᾱS if i = iS for some S ∈ S,
0 otherwise.

Then, inequality αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V and weight-balanced with respect to x∗. Moreover, αx∗
= ᾱz∗.

Proof. It is easy to see that αx∗
= ᾱz∗. First, we prove that αx ≤ β is weight-balanced with respect to x∗. We only need to

prove that if i ∉ B[x∗
] and i = iS for some S ∈ S then αi ≤ 0. In fact, there must exist j ∈ T ≠ S such that (j, i) ∈ A and

x∗

i = x∗

j . But, this means that (T , S) ∈ Ā and z∗

S = z∗

T , so S ∉ B[z∗
]. Since ᾱz ≤ b is weight-balanced with respect to z∗, we

must have αi = ᾱS ≤ 0.
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Second, we show that αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V . For this consider x ∈ P(G, a, b) ∩ {0, 1}V and let F =

{i ∈ B[x∗
] : xi = 1}. Define:

x̂i =


1 if i ∈ cl(F),
0 otherwise.

Also define ẑ ∈ {0, 1}V̂ so that ẑS = x̂iS for each S ∈ S. An outline of the proof is as follows: We first prove (a) x̂ ∈ P(G, a, b).
From this follows (b) ẑ ∈ P(Ḡ, ā, b). We then show (c) αx̂ ≥ αx and (d) αx̂ = ᾱẑ. From (c), (d) and (b) it follows that
αx ≤ αx̂ = ᾱẑ ≤ β , with which we conclude.

(a) By definition x̂ is the incidence vector of the smallest closure containing F . Since it is the incidence vector of a closure, x̂
satisfies all precedence constraints. Further, since x is also the incidence vector of a closure containing F we know that
x̂ ≤ x. Together with a ≥ 0, this implies that ax̂ ≤ b.

(b) We first show that (S, T ) ∈ Ā and S ≠ T imply ẑS ≤ ẑT . We only need to consider the case ẑS = 1. In this case x̂iS = 1,
and so, by how x̂was constructed, there exists k ∈ B[x∗, iS] such that x̂k = 1. On the other hand, (S, T ) ∈ Ā implies there
exists (i, j) ∈ A such that i ∈ S and j ∈ T . Since S ≠ T and (i, j) ∈ A we know B[x∗, i] ( B[x∗, j]. This, however, implies
that k ∈ B[x∗, iS] = B[x∗, i] ( B[x∗, j] = B[x∗, iT ] and so x̂iT = 1. With this we conclude ẑT = 1. Second, we must show
that āẑ ≤ b. For this, it suffices to show that x̂iS ≤ x̂i for all i ∈ S, because this implies that

āẑ =


S∈S

āS ẑS =


S∈S


i∈S

ai


x̂iS ≤


S∈S


i∈S

aix̂i = ax̂ ≤ b.

Consider S ∈ S. To prove that x̂iS ≤ x̂i for all i ∈ S we only need to consider the case x̂iS = 1. From the definition of x̂we
know x̂iS = 1 implies the existence of k ∈ B[x∗, iS] such that x̂k = 1. Since B[x∗, iS] = B[x∗, i] for all i ∈ S, it follows that
k ∈ B[x∗, i] for all i ∈ S. From this we conclude x̂i = 1 for all i ∈ S.

(c) Note that D = {i ∈ V : xi > x̂i} ⊆ V \ B[x∗
]. Since αx ≤ β is weight-balanced with respect to x∗, it follows that αi ≤ 0

for all i ∈ D. Thus, αx̂ ≥ αx.
(d) Finally,

i∈V

αix̂i =


S∈S

αiS x̂iS =


S∈S

ᾱS ẑS . �

5. A simple mechanism for strengthening valid inequalities

Given a valid inequality αx ≤ β for P(G, a, b) ∩ {0, 1}V with α ∈ ZV , β ∈ Z+, in this section we are concerned with
quickly finding a stronger inequalityα′x ≤ β ′ that is also valid for P(G, a, b)∩{0, 1}V . Themechanismwe introduce requires
solving a single instance of a maximum closure problem, as described in the following theorem.

Theorem 23. Let (G, a, b) define an instance of PCKP satisfying our working assumptions. Let αx ≤ β be a valid inequality for
P(G, a, b) ∩ {0, 1}V , and let S = {i ∈ V : αi ≠ 0}. Let x̂ be an optimal solution to problem,

max αx
s.t. xi ≤ xj ∀(i, j) ∈ A

xi ∈ {0, 1} ∀i ∈ V ,
(5)

such that I(x̂) = {i ∈ V : x̂i = 1} is minimal inclusion-wise among all optimal solutions of (5). Then, inequality
i∈I(x̂)

αixi ≤ β (6)

is valid for P(G, a, b) ∩ {0, 1}V . Moreover, if I(x̂) ( S, then constraint (6) is stronger than constraint αx ≤ β .

Proof. We first show that (6) is valid for P(G, a, b) ∩ {0, 1}V . In fact, consider x ∈ P(G, a, b) ∩ {0, 1}V and let I(x) = {i ∈ V :

xi = 1}. Since I(x̂) and I(x) are both closures, we know that I(x) ∩ I(x̂) is also a closure. Define x′
∈ {0, 1}V so that x′

i = 1 iff
i ∈ I(x) ∩ I(x̂). Since x′

≤ x and a ≥ 0 we know that ax′
≤ b and so x′

∈ P(G, a, b) ∩ {0, 1}V . From all this it follows that,
i∈I(x̂)

αixi =


i∈I(x̂)∩I(x)

αixi =


i∈V

αix′

i ≤ β.

We now show that if I(x̂) ( S, then constraint (6) is stronger than constraint αx ≤ β . For this we first show that there
exists z ∈ P(G, a, b) ∩ {0, 1}V such that αz <


i∈I(x̂) αizi. Since I(x̂) ( S, we know that there exists i ∈ S \ I(x̂) such that

αi ≠ 0. Since x̂ is an optimal solution of (5), we know that α(cl(i) \ I(x̂)) ≤ 0. Moreover, we can assume that this i ∈ S \ I(x̂)
is such that for all (i, j) ∈ A we have j ∈ I(x̂) or αj = 0. With this assumption we have that α(cl(i) \ I(x̂)) = αi < 0.
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Define z ∈ {0, 1}V so that zi = 1 iff i ∈ cl(i). Since cl(i) is by definition a closure, and since az ≤ b, we know that
z ∈ P(G, a, b) ∩ {0, 1}V . On the other hand,

αz =


i∈cl(i)∩I(x̂)

αi +


i∈cl(i)\I(x̂)

αi <


i∈cl(i)∩I(x̂)

αi =


i∈I(x̂)

αizi.

Finally, we show that, for any x ∈ P(G, a, b) ∩ {0, 1}V such that αx = β , we have


i∈I(x̂) αixi = β . Let I(x) = {i ∈ V :

xi = 1}. Note that α(I(x) \ I(x̂)) ≤ 0. Otherwise, we would have that α(I(x) ∪ I(x̂)) > α(I(x̂)), which, because I(x̂) ∪ I(x) is
a closure, contradicts the optimality assumption of x̂. From this we have that,

αx =


i∈S∩I(x)

αixi =


i∈I(x̂)

αixi +


i∈I(x)\I(x̂)

αixi ≤


i∈I(x̂)

αixi ≤ β.

Thus αx = β implies


i∈I(x̂) αixi = β , and we conclude our result. �

First note that finding a minimal support optimal solution to (5) is solvable using a flow algorithm. This theorem also
implies that; if αx ≤ β is a strong inequality for P(G, a, b) ∩ {0, 1}V ; then α(rcl(G, S ′)) > 0 for any S ′

⊂ S. Moreover, given
any valid inequality for P(G, a, b) ∩ {0, 1}V , a strong version of it can be found by maximizing a single closure problem.

6. Lifting and PCKP

Definition 24. Let P(G, a, b) define an instance of PCKP satisfying our working assumptions. Consider disjoint sets O, I ⊆ V
and define,

P(G, a, b,O, I) = {x ∈ P(G, a, b) : xi = 1 ∀i ∈ I, xi = 0 ∀i ∈ O}.

Assume I,O ⊆ V are such that P(G, a, b,O, I) ∩ {0, 1}V is non-empty, and consider an inequality αx ≤ β valid for
P(G, a, b,O, I) ∩ {0, 1}V . We say that lifting inequality αx ≤ β consists in computing coefficients γ , η ≥ 0 such that γ ≠ 0
or η ≠ 0, and such that inequality

αx +


i∈I

γi(1 − xi) +


j∈O

ηjxj ≤ β, (7)

is valid for P(G, a, b) ∩ {0, 1}V .

For an introduction to lifting, see [23,24,14]. Lifting in the context of PCKP can be used to serve two important purposes:

• Strengthening valid inequalities. Consider an inequality αx ≤ β that is valid for P(G, a, b) ∩ {0, 1}V , but that is not
facet-defining. If P(G, a, b, I,O) ∩ {0, 1}V is non-empty for sets I,O ⊆ V , lifting can be used to strengthen inequality
αx ≤ β . Such a strengthening procedure would correspond to tilting [14] inequality αx ≤ b in directions (1 − ei) and ej
for i ∈ I and j ∈ O. This use of lifting has been studied by Boyd [7], Park and Park [20], van de Leensel et al. [22] and Boland
et al. [6] in the context of induced cover inequalities, K -covers, (1, K)-configurations and induced clique inequalities.

• Speeding up the computation of cutting planes. Consider a non-integral solution x̄ ∈ P(G, a, b). Let I = {i ∈ V : x̄i = 1}
and O = {i ∈ V : x̄i = 0}. Note that a cutting plane separating x̄ from P(G, a, b,O, I) ∩ {0, 1}V exists if and only if a
cutting plane separating x̄ from P(G, a, b) exists. From a computational point of view, it could be easier to compute
a cutting plane separating x̄ from P(G, a, b,O, I) ∩ {0, 1}V , since this results in solving a separation problem of lower
dimension. If the separation algorithm in P(G, a, b,O, I) is successful we obtain an inequality αx ≤ b that is valid for
P(G, a, b,O, I) ∩ {0, 1}V , and violated by x̄. Lifting this inequality, we obtain an inequality of form (7) that is valid for
P(G, a, b) ∩ {0, 1}V and violated by x̄.

In order for lifting to be computationally effective it should be quick. In this section we describe simple techniques for
quick lifting in the context of PCKP. In Section 6.1 we describe simple relaxations of the lifting problem that are easy to solve.
In Section 6.2 we characterize those variables that can be lifted and those that cannot. Finally, in Section 6.3 we present an
argument for lifting in a greedy manner so as to obtain highly-violated inequalities.

6.1. Optimal lifting and relaxed lifting of a single variable

Let (G, a, b) define an instance of PCKP satisfying our working assumptions, and consider i ∈ V . Assume inequality
αx ≤ β is valid for P(G, a, b) ∩ {x : xi = 1} ∩ {0, 1}V . Down-lifting variable i in constraint αx ≤ β consists in computing a
coefficient γi such that

αx + γi(1 − xi) ≤ β ∀x ∈ P(G, a, b) ∩ {0, 1}V . (8)
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Optimally down-lifting variable i consists in computing the largest possible lifting coefficient γi. This can be done by solving

zi = max αx
s.t. xi = 0

x ∈ P(G, a, b) ∩ {0, 1}V
(9)

and defining γi = β − zi. Observe that if αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V , then γi ≥ 0. Moreover, if γi > 0, then
constraint (8) is strictly stronger than αx ≤ β .

The problem with optimal down-lifting is that solving each instance of (9) could potentially be very difficult. An
alternative is to lift in a non-optimalway by solving a relaxation of (9). That is, by replacing constraint x ∈ P(G, a, b)∩{0, 1}V
by a weaker constraint x ∈ R(G, a, b) where P(G, a, b) ∩ {0, 1}V ⊆ R(G, a, b), and solving the relaxed down-lifting problem
with respect to R(G, a, b)

wi = max αx
s.t. xi = 0

x ∈ R(G, a, b).
(10)

If wi > 0, then γi = βi − wi is still a valid lifting coefficient in the sense that the resulting inequality (8) is valid for
P(G, a, b) ∩ {0, 1}V . Although γi might be a weaker coefficient, if R(G, a, b) is chosen appropriately, it should be computa-
tionally easier to obtain. The first relaxation R(G, a, b) we consider is

RLP(G, a, b) =

x ∈ [0, 1]V : ax ≤ b, xi ≤ xj ∀(i, j) ∈ A


. (11)

In relaxation (11) we relax the integrality condition x ∈ {0, 1}V . Solving (9) subject to this relaxation can be done in
O(mn log n) (see [8]).

Remark. In some cases, the use of relaxation (11) may result in a coefficient γ that is not integral. If the original constraint
αx ≤ β is such that α and β are both integer (as is the case for induced cover and induced clique inequalities) this results in
an opportunity to further strengthen the resulting inequality. In fact, if γi is fractional and all other coefficients are integral,
γi can be rounded up to obtain a stronger, integral coefficient. That this new coefficient is valid can be proved using a simple
argument: Add a constraint ϵxi ≤ ϵ to the lifted inequality, choosing ϵ so that the fractional left-hand side coefficient
becomes integer. Then, round the right-hand side down applying Gomory’s rounding procedure to obtain the desired result.

A second relaxation proposed by Park and Park [20] is

Rα,β(G, a, b) =

x ∈ {0, 1}V : αx ≤ β, xi ≤ xj ∀(i, j) ∈ A, i, j ∈ cl(α)


, (12)

where αx ≤ β is the inequality for P(G, a, b) ∩ {0, 1}V to be lifted and cl(α) = cl({i ∈ V : αi ≠ 0}). Using this relaxation
amounts to solving,

wi = max αx
s.t. αx ≤ β

xi = 0
xk ≤ xj ∀(k, j) ∈ A, k, j ∈ cl(α)

x ∈ {0, 1}V .

(13)

It is not difficult to see that the solution to (13) satisfies wi ≤ ŵi, where
ŵi = min{β,max{αx : xi = 0, xk ≤ xj ∀(k, j) ∈ A, k, j ∈ cl(α), x ∈ [0, 1]V }},

thus we can use γi = βi − ŵi as a lifting coefficient. Note that computing this coefficient only requires solving a single
max-closure problem.

Further note that if the α coefficients are all 0 or 1 (e.g., clique inequalities), then ŵi = wi. That is, we can solve (13) to
optimality by solving a max-closure problem. Moreover, in the specific case of Lifted Cover Inequalities, Park and Park [20]
show that zi = wi = ŵi.

Let P(G, a, b) define an instance of PCKP satisfying our working assumptions, and consider i ∈ V . Assume inequality
αx ≤ β is valid for P(G, a, b) ∩ {x : xi = 0} ∩ {0, 1}V . Up-lifting variable i in constraint αx ≤ β consists in computing a
coefficient ηi such that

αx + ηixi ≤ β ∀x ∈ P(G, a, b) ∩ {0, 1}V . (14)
Optimally up-lifting variable i consists in computing the largest possible lifting coefficient ηi. This can be done by solving

wi = max αx
s.t. xi = 1

x ∈ P(G, a, b) ∩ {0, 1}V
(15)

and defining ηi = β − wi. Observe that if αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V , then ηi ≥ 0. Moreover, if ηi > 0, then
constraint (14) is strictly stronger than αx ≤ β .

As in optimal down-lifting, solving each instance of (15) can be very difficult, and an alternative is to solve a relaxed
lifting problem using RLP(G, a, b) or Rα,β(G, a, b).
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Fig. 3. Example of a fractional solution for the PCKP instance with the graph shown in the figure and knapsack constraint


{xi : i = 1, . . . , 10} ≤ 8.

6.2. Selecting which variables to lift

The following lemma says that if αx ≤ β is a face-defining inequality, it only makes sense to down-lift a very specific set
of variables.

Lemma 25. Let P(G, a, b) define an instance of PCKP satisfying our working assumptions, and consider i ∈ V . Assume inequality
αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V and that there exists x̄ ∈ P(G, a, b) ∩ {0, 1}V such that αx̄ = β . Finally, let
S+ = {s ∈ V : αs > 0}. Let γi be the optimal down-lifting coefficient for variable i in constraint αx ≤ β . If i ∉ cl(S+)
then γi = 0.

Proof. Define x̂ ∈ {0, 1}V as follows,

x̂j =


0 if j ∈ rcl(i)
x̄j otherwise.

First, note that the support of x̂ defines a closure, since it is obtained by removing a reverse closure from a closure. Second,
note that ax̂ ≤ b since a ≥ 0 and x̂ ≤ x̄. These two facts imply that x̂ ∈ P(G, a, b) ∩ {0, 1}V , and αx̂ ≤ β . Next, note that
αx̂ = β . In fact, let S = {s ∈ V : αs ≠ 0}. It is easy to see that if i ∉ cl(S+) then rcl(i)∩ S+ = ∅ and rcl(i)∩ S ⊆ S \ S+. Hence,

αx̂ =


j∈S

αjx̂j =


j∈S\rcl(i)

αjx̂j =


j∈S\rcl(i)

αjx̄j ≥


j∈S

αjx̄j = β.

Thus, since x̂ ∈ P(G, a, b) ∩ {0, 1}V and since αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V , we conclude αx̂ = β . Moreover, since
x̂i = 0 and αx̂ = β , we conclude that x̂ is an optimal solution of Problem (9) with objective β , where we conclude that
γi = 0. �

The following lemma gives a similar result for up-lifting.

Lemma 26. Let P(G, a, b) define an instance of PCKP satisfying our working assumptions, and consider i ∈ V . Let S = {s ∈ V :

αs ≠ 0}. Assume inequality αx ≤ β is valid for P(G, a, b) ∩ {0, 1}V and that for all j ∈ S there exists xj ∈ P(G, a, b) ∩ {xj =

1} ∩ {0, 1}V such that αxj = β . Let ηi be the optimal up-lifting coefficient for variable i in constraint αx ≤ β . If i ∈ cl(S) then
ηi = 0.

Proof. Since i ∈ cl(S), there exists j ∈ S such that i ∈ cl({j}). Consider xj ∈ P(G, a, b) ∩ {xj = 1} ∩ {0, 1}V such that αxj = β

(as in the hypothesis). Since i ∈ cl({j})we also have that xj is in P(G, a, b)∩{xi = 1}∩{0, 1}V . Thus, xj is feasible for problem
(15), and since it has objective function value β we conclude it is also optimal. Hence ηi = 0. �

Note that minimal induced cover inequalities and induced clique inequalities satisfy the conditions required by the two
previous Lemmas.

6.3. Choosing a lifting order

We are now ready to address the following two important questions: Is the lifting order important when strengthening
valid inequalities through lifting? If so, which is the best ordering of the variables in which to do lifting? To answer the first
question consider the instance of PCKP and the corresponding fractional solution depicted in Fig. 3. Suppose we would like
to strengthen the following inequality that is valid for P(G, a, b) ∩ {0, 1}V :

x1 + x2 + x3 + x4 + x5 ≤ 3. (16)
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Note that this inequality is violated by the fractional solution by 0.4. Lemma 26 shows that we should only consider down-
lifting variables x6, x7, x8, x9 and x10. Moreover, optimally down-lifting variable xk is the same as solving the problem

γk = 3 −
max x1 + x2 + x3 + x4 + x5
s.t. x ∈ P(G, a, b) ∩ {xk = 0}.

If we optimally down-lift (in order) variables x6, x7, x8, x9 and x10, we obtain the (facet-defining) inequality

x1 + x2 + x3 + x4 + x5 − x6 − x7 − x8 ≤ 0,

which is violated by 0.8. If, instead, we optimally down-lift in the same variables in reversed order (e.g., x10, x9, x8, x7, x6),
we obtain the valid inequality

x1 + x2 + x3 + x4 + x5 − x9 − 2x10 ≤ 0 (17)

which is violated by 0.5. What this shows is that, in general, the resulting inequality, and the amount by which it is violated,
is dependent of the lifting order. So the question of choosing an appropriate lifting order is very relevant. Again, consider the
same example as before.We know that if we optimally down-lift x10 and then x9 we obtain inequality (17), which is violated
by 0.5. If, instead, we optimally down-lift variables x9 and x10 we obtain inequality,

x1 + x2 + x3 + x4 + x5 − 2x9 − x10 ≤ 0. (18)

This equality is violated by 0.6. That is, lifting x9 before x10 results in an inequality that is more violated. This is because we
are down-lifting and because (1− x∗

10) < (1− x∗

9). It turns out that when lifting pairs of variables, this greedy way of lifting
always results in an inequality that is more violated. This is explained in the following lemma.

Lemma 27. Consider an inequality αx ≤ β that is valid for P(G, a, b) ∩ {0, 1}n. Let R be an integral polyhedral relaxation of
P(G, a, b) ∩ {0, 1}n. That is, R is a polytope such that P(G, a, b) ∩ {0, 1}n ⊆ R and such that the extreme points of R are integral.
Let x∗

∈ P(G, a, b), and suppose we sequentially compute the optimal R-lifting coefficients, i.e.

ηR
i := β − max{αx : xi = 1, x ∈ R}, (19)

and

γ R
i := β − max{αx : xi = 0, x ∈ R}. (20)

Then

1. If (1 − x∗

i ) ≥ (1 − x∗

j ), down-lifting xi first and then down-lifting xj results in an inequality with violation that is equal to or
greater than the violation of the inequality that would be obtained by down-lifting xj first and then down-lifting xi.

2. If x∗

i ≥ x∗

j , up-lifting xi first and then up-lifting xj results in an inequality with violation that is equal to or greater than the
violation of the inequality that would be obtained by up-lifting xj first and then up-lifting xi.

3. If (1 − x∗

i ) ≥ x∗

j , down-lifting xi first and then up-lifting xj results in an inequality with violation that is equal to or greater
than the violation of the inequality that would be obtained by down-lifting xj first and then up-lifting xi.

Proof. We assume that αx ≤ β is valid for P(G, a, b) ∩ {0, 1}n and that i, j ∈ {1, . . . , n} are two indices of variables in
P(G, a, b). We define

Zpq = min

β,max{αx : x ∈ R, xi = p, xj = q}


.

Note that Zpq is at most the maximum value of αx attainable in P(G, a, b) ∩ {0, 1}n ∩ {xi = p, xj = q}. Hence, the resulting
coefficients would be valid for our original problem. With this, we prove each part of Lemma 27 by showing that the sum of
the lifting coefficients remains constant when we exchange the order of lifting between two consecutive variables.

In order to prove 1, we call γi, γj the optimal R-lifting coefficients for xi, xj obtained when first down-lifting xi, and then
xj, and δi, δj the optimal R-lifting coefficients for xi, xj obtained when first down-lifting xj and then xi. We will prove that
δi + δj = γi + γj.

For this, note that

γi = (β − max{Z00, Z01}) ,
γj = (β − γi − max{Z00, Z10 − γi}) ,
δj = (β − max{Z00, Z10}) ,

δi =

β − δj − max{Z00, Z01 − δj}


.

Hence,

γi + γj = β − max{Z00, Z10 − γi}

= β − max{Z00, Z10 − β + max{Z00, Z01}}
= β − max{Z00, Z10 − β + Z00, Z10 − β + Z01}
= β − max{Z00, Z00 − (β − Z10), Z10 + Z01 − β}.
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But, since β ≥ Z10, we conclude that

γi + γj = β − {max{Z00, Z10 + Z01 − β}}.

Since δi and δj are obtained from γi and γj by swapping Z10 and Z01, we conclude that δi + δj = γi + γj.
Statements 2 and 3 of the lemma can be shown analogously. �

An important limitation of Lemma 27 is that it is only true when it comes to lifting pairs of variables. That is, if we want
to lift three or more variables, it is not clear if lifting in a greedy order will result in an inequality that is most violated
with respect to all possible permutations of lifting orders. Park and Park [20] prove that in the case of lifting induced cover
inequalities it is indeed true that greedy lifting orders (for down-lifting variables) result in maximally violated inequalities.
However, it remains an open question to determine whether it is true in general or not.

7. Computational experiments and comparisons

In this section we analyze the performance of our proposed methodologies. That is, we aim to show, via computational
experimentation, that (1) our shrinking methodologies are effective in reducing problem size, (2) separating weight-
balanced inequalities is computationally advantageous (i.e., the number of fractional break-points in practice is small), and
(3) that lifting can have a strongly positive effect on improving LP bounds of problems having PCPKP substructures. For
this purpose we develop a prototype implementation of our proposed algorithmic methodologies to show these points. A
detailed analysis of parameter calibration, and further integration in a branch-and-bound scheme, are beyond the scope of
this article and a topic for future research. In Section 7.1 we describe the algorithms that were implemented, the platform
on which the experiments took place, and the experiments themselves. In Section 7.2 we describe the instances that we
analyzed. In Section 7.3 we describe our computational results.

7.1. Detailed implementation

We developed a simple cutting plane algorithm that separates MIC inequalities as follows. Given an instance of PCKP
described by (G, a, b), and a fractional solution x∗, perform the following steps:

1. Eliminate all vertices i ∈ V such that x∗

i = 0.
2. Compute all break-points B[x∗

] as described in Definition 11.
3. Compute the canonical partition associated with (G, a, b) and x∗ as described in Definition 21.
4. Use the canonical partition to obtain a contracted instance (Ḡ, ā, b) and the corresponding solution x̄∗, as described in

Definition 19.
5. Compute the break-points B[x̄∗

] of instance P(Ḡ, ā, b) and solution x̄∗, as described in Definition 11.
6. For each fractional break-point f ∈ B[x̄∗

] construct a minimal induced cover inequality as follows:
(a) Define C := {f } ∪ (B[x̄∗

] ∩ {i ∈ V̄ : x̄∗

i = 1}).
(b) Add the remaining break-points, in decreasing order of value, until ā(cl(C)) > b.
(c) Enforce minimality of C by eliminating non-minimal elements in reverse order of inclusion to the set.

7. Apply the down-lifting algorithm detailed in Section 6 to obtain a stronger valid inequality in P(Ḡ, ā, b) ∩ {0, 1}V̄ . For
this purpose use the relaxation detailed in Eq. (12).

8. Apply the up-lifting algorithm detailed in Section 6 to obtain a stronger valid inequality in P(Ḡ, ā, b) ∩ {0, 1}V̄ . For this
purpose we use the relaxation detailed in Eq. (11).

9. Map the resulting inequality of instance (Ḡ, ā, b) to the corresponding inequality of instance (G, a, b), as described in
Theorem 22.

The steps described above were repeated many times, in rounds. In each round we generated one inequality for each
fractional break-point, as described above.We only kept cuts that were violated bymore than 2−7. Of these cuts, we selected
the three most violated, added them to the LP, and resolved. We iterated until we were not able to find any inequalities
meeting the minimum violation requirement.

In order to measure the effect of using different features, we ran all instances five times, each time with one of the
following configurations:

1. (CPX) We let CPLEX generate cuts with its default settings.
2. (CPX + MIC) After letting CPLEX generate cuts, we generated MIC inequalities, but we did not lift them.
3. (CPX + D-MIC) After letting CPLEX generate cuts, we generated down-lifted MIC inequalities. We did not do any up-

lifting.
4. (CPX + U-MIC) After letting CPLEX generate cuts, we generated up-lifted MIC inequalities. We did not do any down-

lifting.
5. (CPX + DU-MIC) After letting CPLEX generate cuts, we generated down-and-then-up-lifted MIC inequalities.
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Fig. 4. Precedence example, with angle of 45°.

All of the cuts were added at the root node of the branch and bound tree. We did not analyze branch and cut algorithms.
Instead, for each configuration and for each instance, we analyzed the number of fractional break-points found per round,
the amount of time that our code dedicated to adding cuts and resolving LPs after letting CPLEX first finish adding its cuts,
and the integrality gap closed. All of the code was developed using the C programming language. The underlying Linear
Programming solver used was CPLEX 12.2 [15]. All runs were made using a single thread on the machine with an address
space limit and data limit of 8 Gb. The running time limit was 40 h. The integer tolerance was set to 10−6. The target relative
gap was set to 10−5. The cuts-factor (maximum number of cuts to add relative to the original number of constraints) was
set to 10. Finally, the root-node LP was solved using the barrier solver with crossover. All other CPLEX settings were left at
their default values.

7.2. Instances

To test the algorithms presented above, we considered randomly generated instances inspired by open pit mining
applications. For a given base height h, we considered a three dimensional regular grid of size ⌊

5
2h⌋×⌊

5
2h⌋×h comprised of

unitswe call blocks. For a given block bwith coordinates (x, y, z), its precedenceswere defined as those blocks b′
= (x′, y′, z ′)

in the L2 conewith slope 45° above b (see Fig. 4 for an illustration). For a description of how such precedence structures relate
to open pit mining, see [8]. In our implementation, we only incorporated precedence constraints in the transitively reduced
set. That is, we only added constraints xi ≤ xj for arcs (i, j) ∈ Ā, where, Ā ⊂ A is the maximal set satisfying the following
condition: if (i, j) and (j, k) are in Ā, then (i, k) is not in Ā.

For each instance we added k knapsack constraints (with positive integer coefficients). These coefficients were randomly
generated with a discrete uniform distribution of range {0, . . . , 4094}. The right-hand side for all constraints was defined
as 2144h3. This is approximately π

3 E(ai), and can be interpreted as the expected weight of the largest L2 cone completely
included in the set. The objective function of each element b = (x, y, z) was randomly generated with a discrete uniform
distribution of range {−36(h− z), . . . , 48(h− z)}, thus making, in average, elements deeper in the grid more valuable than
those on top.We considered values of h in {3, . . . , 7}, and values of k in {1, . . . , 9}. The resulting instances had between 147
nodes and 490 precedences (h = 3) to 2023 nodes and 31790 precedences (h = 7).

7.3. Results

In order to compare the different configurations of our cut separation algorithm we used two metrics: the time to solve
the LP and generate the cuts, and the percentage of the gap closed at the root node. Formally, the latter is defined as follows:

gap closed (percentage) =
zcuts − zLP
zIP − zLP

,

where zIP is the optimal integer programming solution value, zLP is the value of the root LP relaxation without any cuts, and
zcuts is the value obtained at the root node after adding cuts.

In total we generated 450 random instances. Specifically, for each h ∈ {3, . . . , 7} and for each k ∈ {1, . . . , 9} we
generated 10 different instances (using different seeds). As previously mentioned, each instance was ran five times, once
with each configuration. For each run with the CPX configuration, we took note of two things: The total time it took to run
this configuration, and the percentage gap closed by CPLEX with its cuts. For each of the other four configurations, we took
note of six things: The percentage gap closed with the CPLEX cuts together with the cuts generated by our algorithm, the
total time taken to run the instance with the given configuration (including the time it took CPLEX to solve the root node),
the total number of cuts that were added by our code, the relative size of the shrunken graph (relative to the original graph),
the total number of break-points (relative the original number of variables in the problem), and the total number of break-
points that had fractional values (relative the original number of variables in the problem). The average of these values over
the 90 instances corresponding to each h-configuration pair, are reported in Table 1.

From the table we can make four first conclusions: (1) By comparing the CPX and CPX + MIC configurations, we can see
that adding MIC inequalities without lifting contributes little value to what CPLEX can achieve with its own cutting plane



D. Espinoza et al. / Discrete Applied Mathematics 194 (2015) 65–80 79

Table 1
Computational results corresponding to the application of 5 different configurations of our cutting-plane algorithm to 450 instances.

h = 3 h = 4 h = 5 h = 6 h = 7

CPX Closed gap (%) 49.62 22.73 0.00 0.00 0.00
Time (s) 0.10 0.57 0.75 3.01 9.60

CPX + MIC

Closed gap (%) 52.25 28.13 0.13 0.01 0.00
Time (s) 0.13 1.17 2.14 7.30 10.10
Number of cuts 24.57 31.04 0.01 0.00 0.00
Shrinkage (%) 18.78 23.91 46.75 52.76 60.29
Break-points (%) 54.69 34.79 19.04 13.07 9.82
Fract. break-points (%) 3.28 1.34 1.66 1.51 3.34

CPX + D-MIC

Closed gap (%) 56.95 35.97 18.56 17.13 26.67
Time (s) 0.14 1.44 6.86 25.33 62.94
Number of cuts 38.13 105.28 113.38 107.75 94.61
Shrinkage (%) 18.49 24.22 47.47 52.37 59.07
Break-points (%) 56.07 37.09 25.93 18.64 14.50
Fract. break-points (%) 3.01 1.18 0.85 0.59 0.54

CPX + U-MIC

Closed gap (%) 58.77 40.88 19.00 25.02 38.32
Time (s) 0.52 22.45 892.55 25931.93 172591.71
Number of cuts 37.67 62.28 42.83 153.23 131.51
Shrinkage (%) 17.86 22.19 42.86 45.69 49.75
Break-points (%) 57.04 38.44 26.47 19.87 16.24
Fract. break-points (%) 2.98 1.29 0.75 0.37 0.37

CPX + DU-MIC

Closed gap (%) 62.08 44.96 29.94 31.34 45.51
Time (s) 0.60 25.78 897.69 18768.45 104194.77
Number of cuts 42.72 100.27 122.18 138.12 93.43
Shrinkage (%) 18.11 21.80 43.26 45.30 49.36
Break-points (%) 57.17 39.45 27.48 20.80 16.78
Fract. break-points (%) 2.62 1.16 0.78 0.49 0.54

routines. Also, by looking at these configurations we can see that the cuts generated by CPLEX and ourmethodology are only
effective on small, shallow, problems (h ≤ 4). (2) By comparing the CPX+MIC, CPX+DMIC, CPX+UMIC, and CPX+DUMIC
configurations, we can see that lifting is critical to getting MIC inequalities to close the integrality gap. Moreover, the gap
can be closed anywhere from 20% to 60%, considering instances of all sizes. (3) By comparing the CPX + DMIC, CPX + UMIC,
and CPX + DUMIC configurations, we can see that up-lifting results in stronger inequalities than down-lifting, but that up-
lifting is considerably slower. Down-lifting is remarkably fast, but up-lifting is prohibitively slow. It should be noted that
in our implementation we use CPLEX to solve the lifting problem over the relaxation defined in (11). It would probably be
significantly faster to use the techniques described in [8,3] to solve these lifting problems. This should be the first thing to
change in any new implementation of our up-lifting mechanism; first because the LP problems are very degenerate; and
second because polynomial and practical algorithms are available, where even hot-start could be used. (4) By comparing
the CPX and CPX + MIC configurations, we can see that the time needed to generate the MIC inequalities is minimal. By
looking at CPX+ DMIC and CPX+ UMIC, we can see that lifting is what takes most of the time—especially up-lifting. Why is
generating the MIC so fast? Shrinking certainly helps. As can be seen from the table, by shrinking we are obtaining a graph
that is one-fifth the size of the original graph on small instances (20% for small h) and one-half the size on larger instances
(50% for larger h values). However, what is really striking, is the small number of fractional break-points. This is really what
is making MIC separation so fast. With such a small number of fractional break-points it is even conceivable that one could
use integer programming to separate the cuts.

8. Final remarks

In this paper we have considered the problem of separating maximally violated inequalities for the precedence
constrained knapsack problem. Our contributions include a new partial characterization of maximally violated inequalities
(the concept ofweight-balanced inequalities), a new safe shrinking technique, and new insights on strengthening and lifting.
In our computational results sections we applied the methodologies described in this paper to an implementation of a
cutting-plane algorithm for separating Minimally Induced Cover (MIC) inequalities. The computational experiments clearly
illustrated the practicality of our results. In fact, the experiments showed that the number of fractional break-points in
practice tends to be very small. This is very important because it greatly eases the separation ofweight-balanced inequalities.
For clique and MIC inequalities this is specially useful, because the support of these inequalities is made up entirely of
positive coefficients, and thus, is limited to variables corresponding to fractional break-points. Moreover, our experiments
show that shrinking also serves to greatly reduce the problem size, and that our proposed lifting mechanisms significantly
strengthen the MIC inequalities obtained. More so, without lifting, our computations show that the inequalities are useless
in practice. We expect that these results can significantly contribute to solving larger integer programming formulations of
PCKP generalizations, especially those that appear in open pit mining problems, which are characterized by being extremely
large.
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