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Abstract. During the last decades, much research has been conducted
deriving classes of valid inequalities for single-row mixed integer pro-
gramming polyhedrons. However, no such class has had as much practical
success as the MIR inequality when used in cutting plane algorithms for
general mixed integer programming problems. In this work we analyze
this empirical observation by developing an algorithm which takes as in-
put a point and a single-row mixed integer polyhedron, and either proves
the point is in the convex hull of said polyhedron, or finds a separating
hyperplane. The main feature of this algorithm is a specialized subroutine
for solving the Mixed Integer Knapsack Problem which exploits cost and
lexicographic dominance. Separating over the entire closure of single-row
systems allows us to establish natural benchmarks by which to evaluate
specific classes of knapsack cuts. Using these benchmarks on Miplib 3.0
instances we analyze the performance of MIR inequalities. Computations
are performed in exact arithmetic.
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1 Introduction

Consider positive integers n, m and let d ∈ Qm, D ∈ Qm×n, l ∈ {Q ∪ {−∞}}n

and u ∈ {Q∪ {+∞}}n. Let I ⊆ N := {1, . . . , n} and consider the mixed integer
set:

P = {x ∈ Rn : Dx ≤ d, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}.

We say that a mixed integer knapsack set of the form,

K = {x ∈ Rn : ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}

with b ∈ Q, a ∈ Qn is implied by P if (a, b) is a non-negative linear combination
of rows obtained from (D, d). Observe that if K is implied by P , then P ⊆ K.
Hence, any inequality which is valid for K is also valid for P . We henceforth call
such inequalities knapsack cuts derived from K.



Deriving strong knapsack cuts is of great practical importance to Mixed
Integer Programming (MIP). In fact, most cutting planes known for general
mixed integer programming are knapsack cuts. For example, Gomory Mixed
Integer cuts [19, 28] are knapsack cuts derived from the tableaus of linear pro-
gramming relaxations, and Lifted Cover Inequalities [12, 23] are knapsack cuts
derived from the original rows of P . Other classes of knapsack cuts include
mixed-integer-rounding (MIR) cuts and their variations [11, 26, 28], split cuts
[10], lift-and-project cuts [4], and group cuts [15, 20] – to name but a few.

In this paper we discuss an empirical methodology for evaluating sub-classes
of knapsack cuts. Formally, consider P as defined above, c ∈ Qn, and C a set of
valid inequalities for P . Define,

z∗(C) = min{cx : Dx ≤ d, l ≤ x ≤ u, πx ≤ πo ∀(π, πo) ∈ C}.

Observe that the value z∗(C) defines a benchmark by which to evaluate classes
of cuts that are subsets of C. For example, consider a family of implied knapsack
sets K and let CK represent the set of all knapsack cuts which can be derived
from some set K ∈ K. Likewise, let MK represent the set of all MIR inequalities
which can be derived from some set K ∈ K. Given that MK ⊆ CK it is easy
to see that z∗(CK) ≥ z∗(MK) and that the proximity of these two values gives
an indication of the strength of MIR inequalities derived from that particular
family K.

In our computational experiments we will consider two specific families of
implied knapsack sets: The set F of all formulation rows of P ; and, given a
basic solution of the simplex algorithm, the set T of all tableau rows.

Boyd [8] and Yan and Boyd [30] compute z∗(CF ) for a subset of pure and
mixed 0-1 instances in MIPLIB 3.0 [7]. Fischetti and Lodi [18] extend this result
by computing z∗(CA), where A is the set of all implied knapsack polyhedra, for
a similar test set of pure 0-1 problems.

In this paper we compute the values z∗(CF) and z∗(CT ) for a larger subset of
MIPLIB 3.0 instances, including general mixed integer problems. We compare
these values to estimates of z∗(MF) and z∗(MT ) (i.e., the bounds obtained
by using MIR inequalities) and attempt to address the well acknowledged ob-
servation that it is difficult to identify classes of knapsack inequalities which
systematically outperform the MIR inequality in broad test sets. Recently, Dash
and Günlük [15] also try to analyze this issue in terms of cuts from the cyclic
group problem.

The organization of this paper is as follows. In the next section, we discuss
how to solve the problem of separating over a single mixed integer knapsack
set. This methodology described requires the use of a subroutine for solving
the mixed integer knapsack problem. An algorithm for solving this problem is
discussed in Sect. 3. Computational results are presented in Sect. 4, while final
remarks and a discussion ensues in Sect. 5.



2 Identifying violated knapsack cuts

Consider x∗ ∈ Rn and a mixed integer knapsack set K. In this section we address
the following questions: Is x∗ ∈ conv(K)? If not, can we find an inequality
πx ≤ πo which is valid for K, and such that πx∗ > πo?

We assume that K has no free variables, since it is easy to substitute a free
variables by two non-negative variables. Let {x1, x2, . . . , xq} and {r1, r2, . . . , rt}
represent the extreme points and extreme rays of conv(K). The following propo-
sition, which follows from the work of Applegate et. al [1], allows us to address
this question.

Proposition 1. Consider the following linear programming (LP) problem with
variables u, v, π ∈ Rn, and πo ∈ R:

LP1 : min
n∑

i=1

(ui + vi)

s.t.
πxk − πo ≤ 0 ∀k = 1 . . . q (C1)
πrk ≤ 0 ∀k = 1 . . . t (C2)
πx∗ − πo = 1 (C3)
π + u − v = 0 (C4)
u ≥ 0, v ≥ 0.

If this problem is infeasible, then x∗ ∈ conv(K), and thus there exists no knap-
sack cut violated by x∗. Otherwise, this problem admits an optimal solution
(u, v, π, πo) such that inequality πx ≤ πo is a valid knapsack cut maximizing:

πx∗ − πo

||π||1

That is, the hyperplane defined by (π, πo) maximizes the L1 distance to x∗.

Because LP1 has an exponential number of constraints, we use a dynamic cut
generation algorithm to solve the problem. We begin with constraints (C3)−(C4)
and a subset of constraints (C1) − (C2). The cut generation algorithm requires
solving the problem max{πx : x ∈ K} at each iteration. If this problem is
unbounded at any given iteration, then there exits an extreme ray rj of conv(K)
such that πrj > 0. That is, we have identified a violated constraint. If this
problem is not unbounded, then there exists an optimal solution corresponding
to an extreme point xk of conv(K). If πxk > πo then we have found a violated
constraint. Otherwise, it means that all constraints of the problem are satisfied.
Solving the oracle problem is discussed in Sect. 3.

Notice that in general, it is not possible to assure that the solution of max{πx :
x ∈ K} given by the oracle will correspond to an extreme point or ray of
conv(K). However, constraints (C1) − (C2) can be re-defined in terms of all
points/rays of K without affecting the correctness of Proposition 1. Even though
this would result in an infinite number of constraints, under very mild assump-
tions [17], the dynamic cut generation algorithm will still converge in a finite



number of iterations.

In order to speed up the solution of LP1 we make use of certain characteri-
zations of violated knapsack cuts.

Let K = {x ∈ Rn : ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}. We may assume
without loss of generality [21] that the bound constraints are tight. Say that a
knapsack cut for K is trivial if it is implied by the linear programming relaxation
of K. A proof of the following result concerning non-trivial knapsack cuts can
be found in Atamtürk [3].

Proposition 2. Every non-trivial facet-defining knapsack cut πx ≤ πo of conv(K)
satisfies the following properties:

(i) If ai > 0, πi ≥ 0
(ii) If ai < 0, πi ≤ 0
(iii) πi = 0 for all i /∈ I such that ai > 0 and ui = +∞.
(iv) πi = 0 for all i /∈ I such that ai < 0 and li = −∞.
(v) There exists a constant α > 0 such that πi = αai for all i /∈ I such that

ai > 0 and li = −∞, and for all i /∈ I such that ai < 0 and ui = +∞.

The following result concerning violated and non-trivial knapsack cuts is a
simple generalization of a technique employed in Boyd [8].

Proposition 3. Consider x∗ /∈ conv(K). Let H+ = {i ∈ N : ai > 0, x∗
i = li}

and H− = {i ∈ N : ai < 0, x∗
i = ui}. If there does not exist a trivial inequality

separating x∗ from conv(K), then there exists a knapsack cut πx ≤ πo such that
πi = 0, ∀i ∈ H+ ∪ H−.

We make use of Propositions 2 – 3 in the following way: We restrict the signs
of coefficients according to Proposition 2 items (i) and (ii). Coefficients πi with
i = 1, . . . , n which can be assumed to be zero are eliminated from LP1. Further,
a single variable is used for all coefficients πi with i = 1, . . . , n for which we
know that πi = αai. Note that this last reduction is equivalent to aggregating
the unbounded continuous variables into a single variable.

Two other techniques are used to speed up the separation process. The first
one uses the fact that MIR inequalities are knapsack cuts. With that in mind,
we first apply an MIR separation heuristic to try to find violated knapsack cuts
and only use the above separation procedure if the MIR heuristic fails.

The other technique relies on the following simple observation. Let U = {i ∈
N : x∗

i = ui} and L = {i ∈ N : x∗
i = li}. If we define,

K∗ = K ∩ {x : xi = ui ∀i ∈ U} ∩ {x : xi = li ∀i ∈ L},

we know that x∗ ∈ conv(K) iff x∗ ∈ conv(K∗). Thus, answering the question:
“Is x∗ ∈ conv(K)?” can be done in a space of usually much smaller dimension
by testing instead if x∗ ∈ conv(K∗).



If our test shows that x∗ ∈ conv(K∗), we are done with the separation since
we know that in this case x∗ ∈ conv(K). However, if x∗ /∈ conv(K∗) we still need
to get a cut separating x∗ from conv(K) and thus we have to run our separation
algorithm in the original space. Notice, however, that if x∗ /∈ conv(K∗), our
separation algorithm will return a cut separating x∗ from conv(K∗), so one
could potentially lift this cut to obtain a cut separating x∗ from conv(K). We
have not implemented this feature yet, but we expect that it will significantly
speed up our algorithm.

To summarize, we outline the complete algorithm below:

Algorithm 1: Outline of knapsack separation process

Input: x
∗ and K

Output: x
∗

∈ conv(K) or a cut separating x
∗ from conv(K)

begin
Run the MIR separation heuristic
if cut found then

return the MIR cut separating x
∗ from conv(K)

else
Apply Propositions 1 and 2 to simplify LP1

Solve LP1 in a reduced space to separate x
∗ from conv(K∗)

if x
∗

∈ conv(K∗) then
return x

∗

∈ conv(K)
else

Solve LP1 in the original variable space to separate x
∗ from conv(K)

end

3 Solving the Mixed Integer Knapsack problem

In this section we are concerned with the problem of solving the Mixed Integer
Knapsack Problem (MIKP),

max{cx : x ∈ K} (1)

We will assume that the problem is feasible, and are interested in either (a)
proving that the problem is unbounded by finding an extreme ray r∗ of conv(K),
or (b) computing the optimal value of the problem by finding the optimal solution
x∗ ∈ K.

Variants of MIKP have long been studied in the research literature. In these
it is typically assumed that all coefficients defining the problem are integer, that
all variables must take integer values (i.e. no continuous variables are allowed),
and that li = 0 for all i = 1, . . . , n. In addition: In the Knapsack Problem (KP)



ui = 1 for all i = 1, . . . , n, in the Bounded Knapsack Problem (BKP) ui < ∞
for all i = 1, . . . , n, and in the Unbounded Knapsack Problem (UKP) ui = ∞
for all i = 1, . . . , n. Most modern algorithms for solving KP, BKP, and UKP are
based either on branch and bound (following the work of Horowitz and Sahni
[24]) and on dynamic programming (following the work of Bellman [6]). However,
the most efficient codes seldom make explicit use of Linear Programming and in
addition, they never consider the use of both integer and continuous variables.
For excellent surveys describing the rich literature on this topic, the reader is
advised to consult Kellerer et al [25] and Martello and Toth [27].

While it is reasonable to expect that many of these algorithms could be
adapted for solving our general case with a mix of continuous, integer, bounded
and unbounded variables, the fact that they are designed to work with integer co-
efficients raises certain concerns with regards to the application discussed in this
paper. In fact, part of our motivation is to study the efficacy of cuts derived from
tableau rows. However, these rows are rarely are made up of integer coefficients,
and whats more, they are typically very ill conditioned. Thus, scaling them so
as to obtain integers may result in extremely large numbers. Considering this
important shortcoming, and the need to further study these algorithms in order
to account for the mixed use of bounded, unbounded, continuous and integer
variables, our approach has been to pursue an LP-based branch and bound ap-
proach, which seems naturally suited to mixed integer programming problems.
This issue, however, is one which merits further research. In what follows we
describe our algorithm for solving MIKP.

Detecting unbounded solutions

For each i ∈ 1, . . . , n define the efficiency of variable xi as ei = ci/ai if ai 6= 0,
as ei = +∞ if ai = 0 and ci > 0, and as ei = −∞ if ai = 0 and ci < 0. In
addition, we say that xi is a potentiator if,

(ai ≤ 0, ci > 0, ui = +∞) or (ai ≥ 0, ci < 0, li = −∞).

We say that xi is an incrementor if,

(ai > 0, ci > 0, ui = +∞) or (ai < 0, ci < 0, li = −∞).

We say that xi is a decrementor if,

(ai > 0, ci ≥ 0, li = −∞) or (ai < 0, ci ≤ 0, ui = +∞).

By identifying a potentiator, or instead, by identifying the most efficient
incrementor and the least efficient decrementor, it is possible to easily establish
if a problem is unbounded, as shown by the following Proposition:

Proposition 4. MIKP is unbounded if and only if one of the following condi-
tions hold,



• MIKP admits a potentiator xj .
• MIKP admits an incrementor xi and a decrementor xj such that ei > ej.

Note that Proposition 4 implies that it can be determined if MIKP is un-
bounded in linear time. Note also that once the potentiator, or instead, the
incrementor and decrementor have been identified, it is easy to construct an
extreme ray of conv(K).

Preprocessing

We consider the following four-step preprocessing algorithm (see [21],[29])
which assumes the problem is not unbounded.

1. Fix to ui all variables xi such that ci ≥ 0 and ai ≤ 0. Fix to li to all variables
xi such that ci ≤ 0 and ai ≥ 0.

2. Make all bounds as tight as possible.
3. Aggregate variables. If two variables xi, xj of the same type (integer or con-

tinuous) are such that ai = aj and ci = cj aggregate them into a new variable
xk of the same type such that ak = ai = aj , ck = ci = cj , lk = li + lj and
uk = ui + uj.

4. Sort variables in order of decreasing efficiency. Break ties checking for vari-
able types (integer or continuous).

Branch and bound

We use a depth-first-search branch and bound algorithm which always bran-
ches on the unique fractional variable. We use a simple linear programming
algorithm, a variation of Dantzig’s algorithm [13] , which runs in linear time by
taking advantage of the fact that variables are sorted by decreasing efficiency.
We do not use any cutting planes in the algorithm, nor any heuristics to gener-
ate feasible solutions. The algorithm uses variable reduced-cost information to
improve variable bounds at each node of the tree.

Domination

Consider x1 and x2, two feasible solutions of MIKP. We say that x1 cost-
dominates x2 if cx1 > cx2 and ax1 ≤ ax2. On the other hand, we say that x1

lexicographically-dominates x2 if cx1 = cx2 and ax1 ≤ ax2, and if in addition,
there exists i ∈ 1, . . . , n such that x1

i < x2
i and x1

k = x2
k, ∀k ∈ 1, . . . , (i − 1).

We say that a solution is dominated if it is cost-dominated or lexicographically-
dominated. Observe that there exists a unique non-dominated optimal solution
(or none at all).

Traditional branch and bound algorithms work by pruning nodes when (a)
they are proven infeasible, or (b) when it can be shown that the optimal solution
in those nodes has value worse than a bound previously obtained. In our imple-
mentation, we additionally prune nodes when (c) it can be shown that every
optimal solution in those nodes is dominated.



Using dominance to improve the branch and bound search can have an im-
portant impact on the effectiveness of the search. In fact, lexicographic and cost
dominance allow us to disregard feasible solutions that are not the unique lexi-
cographically smallest optimum solution, hence significantly reducing the search
space.

In general, the problem of detecting if a solution is dominated can be ex-
tremely difficult. In what follows we describe a simple methodology for identify-
ing specific cases of domination.

Consider indices i, j ∈ I, and non-zero integers ki, kj . If aiki + ajkj ≥
0 and ciki + cjkj < 0 we say that (i, j, ki, kj) defines an integer cost-domination
tuple. If ki ≥ 0, aiki+ajkj ≥ 0 and ciki+cjkj = 0 we say that (i, j, ki, kj) defines
an integer lexicographic-domination tuple. Observe that whenever (ci, ai) and
(cj , aj) are linearly independent there exist an infinite amount of cost-domination
pairs. Likewise, there exist an infinite amount of lexicographic-domination tu-
ples in the linear dependence case. However, in each case, there always exists
a minimal domination tuple. That is, a domination tuple (i, j, ki, kj) such that
all other domination tuples (i, j, k′

i, k
′
j) defined for the same variables, satisfy

|ki| ≤ |k′
i| and |kj | ≤ |k′

j |. The propositions below show how domination tuples
allow for the easy identification of dominated solutions.

Proposition 5. Consider an integer cost-domination tuple (i, j, ki, kj) and let
x be a feasible MIKP solution. If any of the following three conditions hold:

• ki > 0, kj > 0, xi ≥ li + ki and xj ≥ lj + kj ,
• ki < 0, kj > 0, xi ≤ ui + ki and xj ≥ lj + kj,
• ki < 0, kj < 0, xi ≤ ui + ki and xj ≤ uj + kj.

Then x is cost-dominated.

Proposition 6. Consider an integer lexicographic-domination tuple (i, j, ki, kj)
and let x be a feasible MIKP solution. If either of the following conditions hold:

• kj > 0, xi ≥ li + ki, and xj ≥ lj + kj ,
• kj < 0, xi ≥ li + ki, and xj ≤ uj + kj,

then x is lexicographically-dominated.

To see that these propositions are true, it is simply a matter of observing that
if the conditions hold for a feasible x, then defining x′ so that x′

i = xi −ki, x′
j =

xj − kj and x′
k = xk for k 6= i, j, we have x′ is feasible and dominates x.

The following propositions illustrate how domination tuples can be used to
strengthen branch and bound algorithm. This is achieved by preventing nodes
with dominated solutions from being created through additional enforced bound
changes.

Proposition 7. Consider two integer type variables xi and xj and a domination
tuple (i, j, ki, kj) such that ki > 0. If in some node of the branch and bound tree
we impose xi ≥ li + αi, where αi ≥ ki, then:



• If kj > 0 we can impose the constraint xj ≤ lj + kj − 1 in that node.
• If kj < 0 we can impose the constraint xj ≥ uj + kj + 1 in that node.

The case ki < 0 is analogous.
In order to use the above propositions in the branch and bound algorithm

we compute what we call a domination table before initiating the solve. This
table is defined as a list of all possible (minimal) domination tuples. Observe
that we only need store domination tuples (i, j, ki, kj) such that |ki| ≤ (ui − li)
and |kj | ≤ (uj − lj). In order to compute domination tuples we perform a simple
enumeration algorithm which uses bounds to identify where to start and stop
the enumerations.

4 Computational experiments

In this section, our computational experiments are described. All implementa-
tions were compiled using the “C” and “C++” programming languages, using
the Linux operating system (v2.4.27) and Intel Xeon dual-processor computers
(2GB of RAM, at 2.66GHz). Since generating cuts which are invalid is a real
point of concern, we found it appropriate to use the exact arithmetic, both for
solving LP1, and for the MIKP oracle. Thus, we used Applegate et al. [2] exact
LP solver for LP1, and the GNU Multiple Precision (GMP) Arithmetic library
[22] to implement the MIKP algorithm.

4.1 The optimization oracle

We first compare the performance of our MIKP algorithm (“kbb”) with the
performance of CPLEX 9.0 (“cpx”), the only alternative for MIKP we know of
to date. Note that CPLEX was ran with all its default settings, except for the
tolerance, which was set to 10−6. Note also that our MIKP algorithm was ran
using double floating arithmetic, with a tolerance of 10−6.

In our first implementation of the separation algorithm we had incorporated
a version of kbb which did not use domination branching. We quickly realized
that this algorithm was not efficient enough. When running this version of the
code, we saved all problems which took our algorithm more than 2.0 seconds to
solve. These are the 1,556 problems that we now use to compare cpx with the
full version of kbb. It is important to note that by the nature of the way these
instances were generated, there might be some of instances that are very similar
to each other.

In Fig. 1 we present a histogram summarizing the running times of kbb and
cpx. Each point in the curves represents the number of instances which were
solved within a given maximum time. For instance, note that the number of
instances solved to optimality by kbb within a second is roughly 1150, whereas
the number of instances solved to optimality by cpx is roughly 700. Note that
the time is represented in logarithmic scale. Further, observe that the hardest
instance for kbb takes several hundred seconds – roughly ten times less than the
hardest instance for cpx.
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Fig. 1. Histogram comparing KBB algorithm with CPLEX.

It is clear from this histogram that the kbb algorithm outperforms cpx in
the instance set. Note that this does not necessarily mean that kbb solves every
instance faster than cpx, but rather, that cumulatively, kbb performs better.
In fact, on average, kbb takes 81% less time than cpx, and explores 37.5% less
branch-and-bound nodes. Moreover, in 49 instances, CPLEX fails to find the
optimum solution since it runs out of memory after creating too large a branch
and bound tree.

4.2 Knapsack cuts

We next use an implementation of the algorithms presented in Sect. 2 and Sect.
3 to compare the practical performance of MIR cuts against the performance of
separating all possible knapsack cuts. As detailed in Sect. 1, given a family K of
knapsack sets implied by P , such a comparison can be made by comparing the
values z∗(CK) and z∗(MK). In this article we only consider the set K = F , i.e.,
the family of knapsack sets induced by the original formulation rows, and the
set K = T , i.e., the family of knapsack sets induced by the simplex tableau rows
of the optimal LP solution for the original LP relaxation.

Computing z∗(MK) is NP-hard [9], so instead we approximate this value
using an MIR separation heuristic. Given a point x∗, for every K ∈ K we try to
find MIR inequalities that are violated by x∗. We add these inequalities to the
LP relaxation of P and repeat the process until no more MIR inequalities are
found. The MIR inequalities for each K are derived by a separation heuristic
which combines scaling and variable complementation techniques (for details see
[21], [26], and [14]). Denote by zKM the objective function value at the end of the
procedure. Since this is just a heuristic, after completing a run, there may be
violated MIR inequalities which have not been identified. Therefore zKM should
be considered an estimate of z∗(MK).



Note that though the MIR separation problem is NP-hard, one could use the
approaches of Balas and Saxena [5] or Dash, Günlük and Lodi [16] to better
approximate z∗(MK).

To compute z∗(CK), we proceed as follows. Given a fractional solution, we
loop through all of the mixed integer knapsack sets K ∈ K. For each of these
we invoke the procedure outlined in Sect. 2 and identify a violated cut if such
exists. After completing this loop we add the cuts to the problem and repeat.
The procedure ends when for every K we can prove that there is no violated
knapsack cut.

Computational tests are performed on all MIPLIB 3.0 instances using the
mixed integer knapsack sets K = F and K = T . For each problem instance let
z∗UB represent the value of the optimal (or best known) solution and z∗LP the
LP relaxation value. For each set K and each instance we compute the following
performance measures:

LP-PERF: Performance of the original LP formulation. That is, the value of
the LP relaxation gap:

z∗UB − z∗LP

|z∗UB |
.

KNAP-PERF: Performance of the knapsack cuts. That is, how much of the
LP gap was closed by the knapsack cuts:

z∗(CK) − z∗LP

z∗UB − z∗LP

.

MIR-PERF: Performance of MIR separation heuristic. That is, how much of
the LP gap closed by the knapsack cuts was closed by the MIR cuts:

zKM − z∗LP

z∗(CK) − z∗LP

Knapsack cuts derived from formulation rows

In this section we analyze the performance of knapsack and MIR inequali-
ties on formulation rows of MIPLIB 3.0 instances. Results are summarized in
Table 1. Of the 59 instances in the library, we eliminated eight instances which
were unfinished at the time of writing the article (arki001, cap6000, dano3mip,
harp2, mitre, mod008, pk1 and rout), three for which LP-PERF was equal to
0.0 (dsbmip, enigma, and noswot), and thirty two for which KNAP-PERF and
MIR-PERF were both equal to 0.0.

First, note that knapsack cuts alone can considerably close the remaining
LP gap in some problems (column KNAP-PERF). In fact, in 9 problems out
of the 16 problems in which knapsack cuts improved the gap, over 84% of the
gap was closed, and in 14 out of 16 problems, over 50 % of the gap was closed.
On average, the GAP closed by the knapsack cuts among these 16 instances is
around 71%. It is interesting, however, that in thirty two instances knapsack



Table 1. Benchmarks for Formulation Closure

Instance LP-PERF KNAP-PERF MIR-PERF

fiber 61.55% 93.82% 97.06 %
gen 0.16% 99.78% 100.00 %
gesa2 1.18% 71.03% 98.48 %
gesa3 0.56% 49.33% 96.90 %
gt2 36.41% 94.52% 97.93 %
l152lav 1.39% 1.36% 0.41 %
lseu 25.48% 76.09% 88.25 %
mod010 0.24% 18.34% 100.00 %
p0033 18.40% 87.42% 87.31 %
p0201 9.72% 33.78% 100.00 %
p0282 31.56% 98.59% 95.42 %
p0548 96.37% 84.34% 62.76 %
p2756 13.93% 86.35% 51.49 %
qnet1 10.95% 89.06% 56.68 %
qnet1 o 24.54% 95.12% 88.65 %
rgn 40.63% 57.49% 100.00 %

cuts should do nothing to improve the gap. If in addition we consider in our
average the thirty two instances for which KNAP-PERF is 0.0%, this drops to
23.66%.

Second, consider the column MIR in which we can get an idea of how well
the mixed integer rounding cut closure compares to the knapsack cut closure.
Observe that of the 16 problems, in 12 of them, by using the MIR cuts alone, we
close over 87% of the GAP closed by the knapsack cuts. This indicates that MIR
inequalities are a very important subset of knapsack inequalities; at least for the
instances considered. A natural question is the following: How much could we
improve the value of MIR-PERF if we used an exact MIR separation algorithm
as opposed to a heuristic? In an attempt to answer this question we fine-tuned
the settings of the MIR heuristic for the problems p0033 and qnet1. In these,
we managed to improve the value of MIR-PERF from 87.31% to 100% and from
56.68% to 77.27% respectively.

Knapsack cuts derived from tableau rows

In this section we analyze the performance of knapsack and MIR inequalities
on tableau rows of MIPLIB 3.0 instances. For this we compute z∗LP and store
the tableau rows in the set of knapsack polyhedra K = T , which we use for all
subsequent computations. Results are summarized in Table 2. Of the 59 instances
in the library, we eliminated thirty two instances which were unfinished at the
time of writing the article, three for which LP-PERF was equal to 0.0 (dsbmip,
enigma, and noswot), and two for which KNAP-PERF and MIR-PERF were
both equal to 0.0 (stein27 and stein45).



Table 2. Benchmarks for Tableau Closure

Instance LP-PERF KNAP-PERF MIR-PERF

air03 0.38 % 100.00 % 100.00%
bell3a 1.80 % 60.15 % 100.00%
bell5 3.99 % 14.68 % 98.94%
dcmulti 2.24 % 50.49 % 99.94%
egout 73.67 % 55.33 % 100.00%
fixnet6 69.85 % 11.08 % 100.00%
flugpl 2.86 % 11.74 % 100.00%
gesa2 1.18 % 28.13 % 99.98%
gesa2 o 1.18 % 29.65 % 99.67%
khb05250 10.31 % 75.14 % 100.00%
misc03 43.15 % 7.24 % 100.00%
misc06 0.07 % 26.98 % 100.00%
misc07 49.64 % 0.72 % 100.00%
modglob 1.49 % 18.05 % 100.00%
p0033 18.40 % 74.71 % 100.00%
p0201 9.72 % 34.36 % 100.00%
pp08a 62.61 % 50.97 % 100.00%
qiu 601.15 % 3.47 % 100.00%
rgn 40.63 % 9.78 % 100.00%
set1ch 41.31 % 39.18 % 100.00%
vpm1 22.92 % 49.09 % 96.30%
vpm2 28.08 % 19.39 % 98.85%

First, it is important to remark that separating knapsack cuts from tableau
rows is considerable more difficult than separating knapsack cuts from original
formulation rows. This is due to several reasons: Tableau rows are typically much
more dense, coefficients tend to be numerically very bad, and rows tend to have
a lot of continuous variables. This added difficulty is reflected in the fact that
out of 59 instances, in two days of runs we just managed to solve 24 instances to
completion, as opposed to the 48 which we solved when considering formulation
rows.

Second, it is interesting to note that the value KNAP-PERF is very erratic,
uniformly ranging in values from 100% to 0.0%. In contrast to the case of for-
mulation rows, only two instances are such that KNAP-PERF is 0.0%.

The last, and perhaps most startling observation, is that the MIR-PERF is
always at 100%, if not very close. If this result were true in general, it would
be very surprising. However, because there are still thirty two instances which
have not been solved one must be very careful. Because of the way in which we
computed these numbers, it could be the case that those instances with MIR-
PERF close to 100% are easier for our methodology to solve. It is very reasonable
to expect that instances with MIR-PERF well below 100% are more difficult to
solve as they require more iterations of the knapsack separation algorithm as
opposed to iterations of the MIR separation heuristic.



5 Final remarks

It is important to note that these results are very preliminary. We put great
care into ensuring that the generated cuts are valid and that the procedure runs
correctly, but this makes the methodology very slow. For example, some of the
KNAP-PERF values computed took as much as 5 days to obtain. Some of the
unsolved instances have been ran for over a week without a final answer being
reported. We are currently developing further techniques by which these compu-
tations can be accelerated. Part of the difficulty arises from the fact that exact
arithmetic is being employed. In average, we have observed that performing ex-
act arithmetic computations take 100 times longer than floating point arithmetic
computations.

One of the main goals of this study has been to assess the overall effectiveness
of MIR inequalities relative to knapsack cuts. The motivation being the empirical
observation that though much research has been conducted studying inequalities
derived from single row systems, no such class of inequalities has been able
to systematically improve upon the performance of MIRs. In this regard, the
results we present are surprising. We observe that in most test problems, the
bound obtained by optimizing over the MIR closure is very similar in value (if
not equal) to the bound obtained optimizing over the knapsack closure. Though
it is important to note that this observation is limited in the number of test
problems considered, it does help explain the lack of success in generating other
cuts from tableau and formulation rows, and, suggests that for further bound
improvements we might have to consider new row aggregation schemes, or cuts
derived from multiple row systems.
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